58,491 research outputs found

    N=2 Conformal Superspace in Four Dimensions

    Full text link
    We develop the geometry of four dimensional N=2 superspace where the entire conformal algebra of SU(2,2|2) is realized linearly in the structure group rather than just the SL(2,C) x U(2)_R subgroup of Lorentz and R-symmetries, extending to N=2 our prior result for N=1 superspace. This formulation explicitly lifts to superspace the existing methods of the N=2 superconformal tensor calculus; at the same time the geometry, when degauged to SL(2,C) x U(2)_R, reproduces the existing formulation of N=2 conformal supergravity constructed by Howe.Comment: 43 pages; v2 references added, acknowledgments update

    Timing by Stellar Pulsations as an Exoplanet Discovery Method

    Full text link
    The stable oscillations of pulsating stars can serve as accurate timepieces, which may be monitored for the influence of exoplanets. An external companion gravitationally tugs the host star, causing periodic changes in pulsation arrival times. This method is most sensitive to detecting substellar companions around the hottest pulsating stars, especially compact remnants like white dwarfs and hot subdwarfs, as well as delta Scuti variables (A stars). However, it is applicable to any pulsating star with sufficiently stable oscillations. Care must be taken to ensure that the changes in pulsation arrival times are not caused by intrinsic stellar variability; an external, light-travel-time effect from an exoplanet identically affects all pulsation modes. With more long-baseline photometric campaigns coming online, this method is yielding new detections of substellar companions.Comment: 9 pages, 2 figures: Invited review to appear in 'Handbook of Exoplanets,' Springer Reference Works, edited by Hans J. Deeg and Juan Antonio Belmont

    Uniting mathematics and biology for control of visceral leishmaniasis

    Get PDF
    The neglected tropical disease (NTD) visceral leishmaniasis (VL) has been targeted by the WHO for elimination as a public health problem on the Indian subcontinent by 2017 or earlier. To date there is a surprising scarcity of mathematical models capable of capturing VL disease dynamics, which are widely considered central to planning and assessing the efficacy of interventions. The few models that have been developed are examined, highlighting the necessity for better data to parameterise and fit these and future models. In particular, the characterisation and infectiousness of the different disease stages will be crucial to elimination. Modelling can then assist in establishing whether, when, and how the WHO VL elimination targets can be met

    Reconciling a significant hierarchical assembly of massive early-type galaxies at z<~1 with mass downsizing

    Get PDF
    Hierarchical models predict that massive early-type galaxies (mETGs) are the latest systems to be in place into the cosmic scenario (at z<~0.5), conflicting with the observational phenomenon of galaxy mass downsizing, which poses that the most massive galaxies have been in place earlier that their lower-mass counterparts (since z~0.7). We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The most striking model prediction is that very few present-day mETGs have been really in place since z~1, because ~90% of the mETGs existing at z~1 are going to be involved in a major merger between z~1 and the present. Accounting for this, the model derives an assembly redshift for mETGs in good agreement with hierarchical expectations, reproducing observational mass downsizing trends at the same time.Comment: 2 pages, 1 figure, Proceedings of Symposium 2 of JENAM 2010, "Environment and the Formation of Galaxies: 30 years later", ed. I. Ferreras and A. Pasquali, Astrophysics & Space Science Proceedings, Springe

    Interfacial adhesion of laser clad functionally graded materials

    Get PDF
    Specially designed samples of laser clad AlSi40 functionally graded materials (FGM) are made for evaluating the interfacial adhesion. To obtain the interfacial bond strength notches are made right at the interface of the FGMs. In-situ microstructural observations during straining in a field-emission gun environmental scanning electron microscopy reveal different failure modes of the FGMs and substrate. Mapping of strain fields using digital imaging correlation shows a gradual transition of deformation over the interface region and softening effects in the heat-affected zones of the FGM tracks. The strengthening of the FGM is dominated by the size of the Al halos around the particles, in accordance with a dislocation pile-up model.

    The coastal marine mollusc fauna of King Island, Tasmania

    Get PDF
    The findings of a week-long survey of coastal marine molluscs around King Island are documented. In total, 408 species were recorded, 78 for the first time. King Island appears to be the only Tasmanian outpost for 44 species. Only two non-native species were found. A number of usually distinct species-pairs or groups appear to form intergrades around King Island. Along the island’s east coast, beached shells belonging to Quaternary-era sub-fossils were found, not all of which are represented in the contemporary local fauna. Following critical examination of published sources and museum specimens, a checklist of King Island’s coastal marine mollusc fauna is presented, comprising 619 species. It is likely that many more local species await discovery and documentation

    The Winter Olympics: driving urban change, 1924-2022

    Get PDF
    • 

    corecore